Acquiring knowledge about human goals from Search Query Logs

نویسندگان

  • Markus Strohmaier
  • Mark Kröll
چکیده

A better understanding of what motivates humans to perform certain actions is relevant for a range of research challenges including generating action sequences that implement goals (planning). A first step in this direction is the task of acquiring knowledge about human goals. In this work, we investigate whether Search Query Logs are a viable source for extracting expressions of human goals. For this purpose, we devise an algorithm that automatically identifies queries containing explicit goals such as find home to rent in Florida. Evaluation results of our algorithm achieve useful precision/recall values. We apply the classification algorithm to two large Search Query Logs, recorded by AOL and Microsoft Research in 2006, and obtain a set of ∼110.000 queries containing explicit goals. To study the nature of human goals in Search Query Logs, we conduct qualitative, quantitative and comparative analyses. Our findings suggest that Search Query Logs (i) represent a viable source for extracting human goals, (ii) contain a great variety of human goals and (iii) contain human goals that can be employed to complement existing commonsense knowledge bases. Finally, we illustrate the potential of goal knowledge for addressing following application scenario: to refine and extend commonsense knowledge with human goals from Search Query Logs. This work is relevant for (i) knowledge engineers interested in acquiring human goals from textual corpora and constructing knowledge bases of human goals (ii) researchers interested in studying characteristics of human goals in Search Query Logs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acquiring Knowledge About Explicit User Goals from Search Query Logs

Access to knowledge about user goals represents a critical component for realizing the vision of intelligent agents acting upon user intent on the web. Yet, the acquisition of knowledge about user goals represents a major challenge. In a departure from existing approaches, this paper proposes a novel perspective for knowledge acquisition: The utilization of search query logs for this task. The ...

متن کامل

Different Degrees of Explicitness in Intentional Artifacts: Studying User Goals in a Large Search Query Log

On the web, search engines represent a primary instrument through which users exercise their intent. Understanding the specific goals users express in search queries could improve our theoretical knowledge about strategies for search goal formulation and search behavior, and could equip search engine providers with better descriptions of users’ information needs. However, the degree to which go...

متن کامل

Different Degrees of Explicitness in Intentional Artifacts: An Exploratory Study of User Goals in a Search Query Log

On the web, search engines represent a primary instrument through which users exercise their intent. Understanding the specific goals users express in search queries could improve our theoretical knowledge about strategies for search goal formulation and search behavior, and could equip search engine providers with better descriptions of users’ information needs. However, the degree to which go...

متن کامل

Automatically Constructing Concept Hierarchies of Health-Related Human Goals

To realize the vision of intelligent agents on the web, agents need to be capable of understanding people’s behavior. Such an understanding would enable them to better predict and support human activities on the web. If agents had access to knowledge about human goals, they could, for instance, recognize people’s goals from their actions or reason about people’s goals. In this work, we study to...

متن کامل

Minimally Supervised Learning of Semantic Knowledge from Query Logs

We propose a method for learning semantic categories of words with minimal supervision from web search query logs. Our method is based on the Espresso algorithm (Pantel and Pennacchiotti, 2006) for extracting binary lexical relations, but makes important modifications to handle query log data for the task of acquiring semantic categories. We present experimental results comparing our method wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012